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Abstract. A simple and rigorous formulation of elastic component of elastoplastic model for geomaterials is 
presented. Although linear relation between elastic volumetric strain and mean principal stress in log scale is 
assumed in most of the usual models, linear relation between each principal stress and the corresponding 
principal elastic strain in log scale is assumed. Incorporating Poisson’s ratio, three principal stresses vs. three 
elastic principal strain relation is obtained. Also, assuming coaxially between stresses and elastic strains, this 
relation can be transformed to stress- elastic strain relation in general coordinate. The material parameters of 
the proposed model of the elastic component are the same as those of the usual models, i.e., swelling index 
and Poisson’s ratio . This proposed model can describe typical unloading behaviour of various shear tests 
and constant stress ratio unloading tests reported before.

1 Introduction
In 3D elastoplastic modelling, though there have been 
many discussions on the modelling of plastic component, 
few attentions are paid to elastic component. Elastic 
component of most elastoplastic models is expressed by 
incremental non-linear Hooke’s law using the swelling 
index  and the Poisson’s ratio . However, according to 
this modelling, the elastic volumetric stain is independent 
of the stress path, but other strains (e.g., deviatoric strain) 
depend on the stress path. Particularly, implicit 
formulation such as return mapping in elastoplastic 
analysis requires unique relation not between stress 
increments and elastic strain increments but between 
stresses and elastic strains. Also, there is a possibility for 
the stress condition to enter into tension zone in the 
formulation using Hooke’s law. Generation of tensile 
stress during elastic deformation causes instability of 
calculation when adopting the elastoplastic constitutive 
model to boundary value problems. 

2 Ordinary modelling of elastic 
component and its problem

In most ordinary elastoplastic models of geomaterials, the 
elastic component is formulated using the incremental 
Hooke’s law. The principal strain increments are 
expressed using the principal stress increments as follows: 
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General Hooke’s law in incremental form is given by: 
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Here, tangential Young’s modulus E is proportional to 
mean principal stress p and expressed as follows using the 
swelling index  on e-lnp relation in isotropic or Ko 
unloading compression tests, and Poisson’s ratio  : 

Fig. 1. Observed results of clay under constant stress ratio 
unloading conditions (Ohomaki [1])
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Fig. 2. Calculated results of clay under constant stress ratio 
unloading conditions
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Figure 1 shows the observed relation between 
volumetric strain v and deviatoric strain d of a normally 
consolidated clay under constant stress ratio (q/p=const.) 
unloading tests [1]. It can be seen from this figure that the 
elastic strain is always isotropic regardless of the stress 
ratio, because elastic strain alone occurs in these stress 
paths. Same tendency on clay and sand was reported in 
the references [2, 3]. The lines of Fig. 2 show the 
corresponding results calculated by Eq. (1), arranged with 
the same relation as Fig. 1, where material parameters 
=0.01, =0.2, e0=0.72. In every case mean stress is 
decreased from 196kPa to 1.96kPa. Although the 
volumetric strain is independent of the stress ratio, 
deviatoric strain becomes large with increase of stress 
ratio. 

Rectangular dots in Fig. 3 show the results calculated 
by Eq. (1) in terms of the relation between v and d, when 
stress changes from point O to point A under different 
stress paths (O-B-A and O-C-A). In these stress paths, 
only elastic strain occurs. It can be recognized that the 
elastic deviatoric strain calculated by Eq. (1) depends on 
the stress path, even if the initial and targeted stresses are 
same. This means that the strain obtained by Eqs. (1) to 
(3) is not fully elastic in true sense. 

Figure 4 illustrates a schematic yield surface of Cam 
clay type’s model in p – q plane. In this figure, the upper 
half is in triaxial compression condition, and the lower 
half is in triaxial extension condition. The broken lines 
q/p=3.0 and q/p=1.5 indicate the stress condition where 
minor principal stress is zero. Here, the area without 
tensile stress is limited in the zone of green colour. As 
shown in this figure, the yield surface (f=0) of Cam clay 
type model, which is formulated by the stress parameters 
(p and q) and is symmetric with respect to p-axis, has 
tension zone inside of the yield surface. This means that 
tension stress may develop during elastic deformation. 
Also, even in elastoplastic region (stress condition lies on 
the yield surface), tensile stress occurs for stress ratio 
q/p>3.0 in triaxial compression and q/p>1.5 in triaxial 
extension. Further, when implicit formulation such as 
return mapping algorithm is adopted, first trial stress is 
obtained assuming elastic state. In this trial step, the stress 
condition may enter the tension zone if Hooke’s elasticity 
is used. 

As is understood from the above discussion, a 
formulation of elastic component which never develops 
tension stress under any kinds of deformation is desired. 
This is because geomaterials are governed by frictional 
law and have no resistance against tensile stress.  

3 Elastic model without generating 
tensile stress 

3.1 Formulation of model 

Considering the test results of isotropic deformation (Fig. 
1) and well-known linear relation between void ratio and 

stress in log scale under constant stress ratio unloading 
condition, three principal elastic strains are given by the 
following equation [4]: 
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where, Pa is atmospheric pressure. This equation is 
obtained only by replacing three principal stresses in 
Hooke’s law by their logarithm. From Eq. (4), three 
principal stresses are expressed as the functions of three 
principal elastic strains. 

 

 
Fig. 3. Calculated results of clay under unloading stress 
paths O-B-A and O-C-A 
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Fig. 4. Zone where tension stress never occurs in (p, q) plane 
and yield surface of ordinary elastoplastic model 
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As can be seen from Eq. (5), three principal stresses never 
become negative. It can be seen from Eq. (4) that 
volumetric strain is expressed as: 
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When stress changes from ((1), (2), (3)) to k((1), 
(2), (3)), volumetric strain is given by: 
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and three principal strains become the same  
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                         (8) 

Since 3(1-2)/S corresponds to /(1+e0), S is a constant 
value and is given by: 
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Also, deviatoric strain ()-()  () is expressed as : 
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Then, deviatoric strain is related not with deviatoric stress 
but with stress ratio. 

When eigen vectors corresponding to eigen values 
(principal stresses; () (=1, 2, 3)) of stress ij is given 
by n()

i  (i=1, 2, 3), stress ij can be expressed using the 
principal stresses and the eigen values. Also, assuming the 
coaxiality between stress and elastic strain, elastic 
principal strain  () is expressed by elastic strain ij, using 
the eigen vectors of stress. 
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Using Eqs. (5), (11) and (12), ij can be obtained from 
kl. Refering to the paper [5], it is possible to transform the 
model to the rate type model assuming the condition of 
coaxiality between stress and elastic strain (see Appendix). 

3.2 Simulation of elastic behaviour by proposed 
model 

The thick gray line in Fig. 2 is the results calculated by the 
proposed model. The calculated volumetric strain is the 
same as those of the ordinary model, but the calculated 

 

 
Fig. 5. Calculated q/p- de- de relations under p=const., 
3=const. and 1=const. condition. 
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Fig. 6. Calculated q/p- de relation in triaxial compression and 
extension conditions. 
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deviatoric strain is zero, regardless of stress ratio. The 
circular dots in Fig. 3 are the results by the proposed 
model. Since the proposed model is basically formulated 
as the relation between stresses and elastic strains, the 
strain at point A is independent of stress paths.  

Figure 5 compares the calculated elastic strain of 
p=const., 3=const. and 1=const. tests under triaxial 
compression condition, arranged with respect to the 
relation between q/p, d and v. In this figure, the solid 
curves and the open dots represent the results by proposed 
model, and the dotted curves represent the results by non-
linear Hooke’s law. It can be seen from the results by 
proposed model that elastic volumetric strain is expansive 
under constant mean stress, and elastic deviatoric strain is 
determined uniquely only by the stress ratio. Here, the 
open dots represent the results by Eq. (4), and the solid 
curves are the calculated results based on the rate type 
formulation. Figure 6 shows the calculated q/p - d 
relation by proposed model (solid curves) and non-linear 
Hooke’s law (broken curves) in constant mean stress tests. 
Here, the upper half is in triaxial compression condition, 
and the lower half is in triaxial extension condition. 
Although the results by non-linear Hooke’s law enter the 
tension zone, the results by the proposed model converge 
to the 3=0 lines and does not enter the tension zone with 
the development of the strain. 

Figure 7 shows the variation of stresses (x, y, z, xy) 
by the proposed model when the strain path including 
rotation of principal axis is incorporated. Figure 8 shows 
the relation between q/p and various strain components 
(xe, ye, ze, xye) when the stress path including the 
rotation of principal stress axis is incorporated. In these 
figures, dots are the results calculated by Eqs. (5), (11) 
and (12) and curves are results from rate type formulation. 
It can be seen that the results derived by integration of rate 
type formulation agrees well with the results by Eqs. (5), 
(11) and (12), even when the rotation of principal axis is 
included in the stress path or strain path. 

3.3 Constitutive model which never generates 
tensile stress under any strain path 

A constitutive model which is named Suloading tij model 
has been proposed [6, 7, 8]. This model can describe soil 
behaviour in general 3D condition uniquely using the 
concept of tij [9]. Also, employing the subloading concept 
by Hashiguchi [10] and extending it, the influence of 
density, influence of bonding, time- effect and others are 
taken into consideration in the model.  

According to the tij concept, the yield surface is 
formulated using the stress parameters (tN and tS) instead 
of (p and q). Figure 9 shows the yield surface (f=0) of the 
model based on tij concept, describing on (tN, tS) plane 
schematically. The upper half is in triaxial compression 
condition, and the lower half is in triaxial extension 
condition, in the same way as Fig. 4. Here, since the 
vertical axis (tS axis) satisfies the condition of 3=0, there 
is no tensile stress in the region of green colour (tN>0). 
Therefore, inside and on the yield surface, all normal 
stresses are always positive. The elastoplastic model in 
which the plastic component is calculated based on tij 

concept and the elastic component is calculated by the 
present elastic model never generates tensile stress in 
elastoplastic deformation and elastic deformation. This is 
very beneficial when applying the constitutive model to 
the boundary value problems. 

4 Conclusions 
After describing the outline and problems of ordinary 
elastic model of geomaterials using incremental non-
linear Hooke’s law, a new elastic model in 3D condition 
is presented. This model is derived by assuming a linear 
relation between each principal strain and the 
corresponding principal stress in log scale, and 
introducing idea of Poisson’s ratio. The proposed model 

 
Fig. 7. Calculated stress-elastic strain relation under strain path 
including the rotation of principal axis 
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is very simple, and its material parameters are the same as 
those of ordinary models (swelling index  and Poisson’s 
ratio ). The elastic model never generates tension stress 
under any strain path and simulates typical observed 
elastic behaviour such that linear e-lnp relation with the 
slope of  and isotropic deformation under stress ratio 
constant unloading test. Combining this elastic model 
with the elastoplastic model based on tij concept 
(Subloading tij model), it becomes possible not to pay 
attention to the generation of tensile stress in the analysis 
of boundary value problems. 
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Appendix 
Rate type formulation of the proposed non-linear elastic 
model is derived referring to the method described in the 
paper [5]. 

Stress ij and (elastic) strain kl is expressed using their 
principal values and eigen vectors as follows: 
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(A2) 
Eq. (A2) is written using rate of kl as: 

 1 2 1 2
ij ij ij ijkl ijkl klC C                   (A3) 

where: 
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         

 




   

(A4) 

Also, the partial derivative of principal stress () in Eq. 
(5) with respect to strain pq is given by: 
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                 
       
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       



　　　

　　　

　　  2,3 &    

   

(A5) 

       

   

   

( )

( )

In Eq. (A4), when  ( ),

 in Eq. (A4) is replaced by 

(L'Hopital's rule)

   

  

 

   
  

 

 
 


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